Polyethylene Properties

(The major role of.....)

Gerard A. Engh, MD

Anderson Orthopaedic Research Institute Alexandria, Virginia USA

Accelerated TKA Wear

- A <u>problem</u> of the 80s & 90s
- Caused by gamma irradiation in air sterilization
- Not a material problem

Williams et al, CORR, 1998

Accelerated TKA Wear

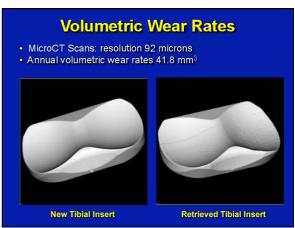
- Efforts to improve wear by changing the properties of poly failed miserably
 - Carbon-fiber reinforced polyethylene
 - Heat pressed polyethylene
 - Hylamer-M polyethylene
- The solution changing the method of sterilization

- Non-gamma - Gamma in inert environment

Non-Radiated Poly Always Performed Extremely Well

- 32 Ethylene Oxide:
- No delamination
- Negligible oxidation
- Penetration rate:<.1mm/yr

Williams, CORR 1998

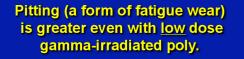

6 implants in vivo >15 years

Low Dose Gamma-In-Inert Poly Has Very Low Wear Rates

- 64 AMK implants
- 1.9-3.9 kGy (barrier package)
- 5-12 year follow-up
- Linear wear rates: 0.02mm/yr

Collier, JBJS 2008

		_	
40			
49			-
10	8.00		
- 100	ترجيعه	plographing in	-
10	×	G.G. 114	
30			
84			
- 14			
-			

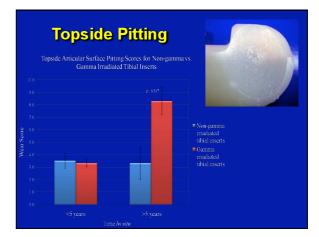

Retrieval Study W	ear Rates	
	Linear (mm/year)	Volumetric (mm³/year)
Tibial Inserts Acetabular Cup Liner	0.04 0.19	41.8 87.6
Results- Conventionally and less than ½ the vol		s exhibit ¼ the linear wear oular cup liners.

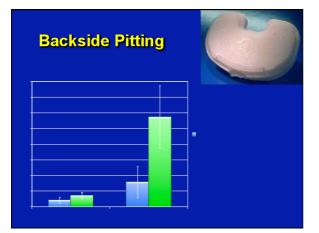
Wear of Conventionally Sterilized Tibial

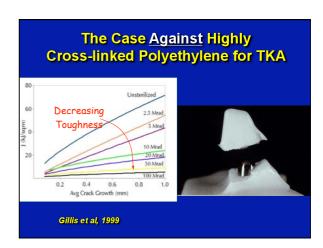
Engh GA, J Arthroplasty 2009 Engh CA Jr., J Arthroplasty 2006 Heisel C, JBJS 2004

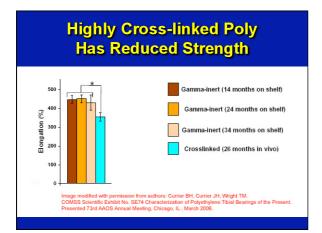
The Case <u>Against</u> Highly Cross-linked Polyethylene for TKA

- Reduced tensile strength ? > fatigue wear
- Smaller wear particles > bio-reactivity
- No clinical studies to date of reduced wear




Gamma-Irradiated


Gas Plasma


111 Tibial Inserts In situ: 28.3 months 45 Tibial Inserts In situ: 31.9 months

AORI Retrievals

Wear Debris Is Smaller And More Bio-Reactive

- A larger fraction of highly cross-linked particles were between 0.2 – 1.0 µm
- These particles have a more robust inflammatory response

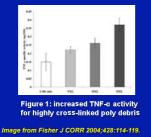
J Huddleston, ORS 2006

Wear Debris Is Smaller And More Bio-Reactive

- 5-10 Mrad poly produced smaller particles (0.1-1.0um)
- TNF-alpha production stimulated with 0.1um³ cross-linked poly, but only with 10um³ non cross-linked poly

Ingram, Biomat, 2004

Wear Debris Is More Bio-Reactive

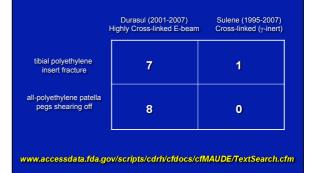

- In vivo calvarial model
- Cross-linked debris at 10MRad was more inflammatory than non cross-linked debris (p<0.05)

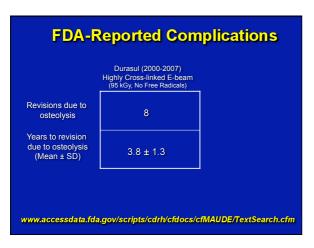
Forsythe, 52nd ORS meeting

Wear Debris

Cellular response to wear debris

Retrieval Wear Scores


- 13 highly cross-linked (95kGy) tibial insert versus 18 g-nitrogen (25-40kGy) tibial insert
- No difference in % of pre- or post-melt surface damage


Willie et al, J Bio Med Mat Res, 2007

Highly Cross-link	ed Polyethylene
Retrieval Studies	
	Total Wear Score
Highly Cross-linked	47.3 ¹
Conventional	58.6 ¹
Results: Highly cross-linked poly polyethylene sterilized by method	
1 Muratoglu O JOA 2003:18(7):42-	47

² Willie B J Biomed Mater Res Part B: Appl Biomater 2007.

FDA-Reports of Implant Fractures

Highly crosslinked poly for TKA is a <u>bad</u> idea because.....

- 1) Non-radiated poly has performed extremely well with TKA
- 2) Highly cross-linked poly has reduced strength
- Wear-debris from highly cross-linked poly is smaller and more bio-reactive
- Early retrieval studies show no improvement in either wear or osteolysis with highly cross-linked poly

Conclusions

- The use of highly x-linked poly for total knee arthroplasty comes with some risks and no proven benefits.
- Low dose gamma-in-inert poly has more pitting than non-irradiated poly.
- Clinical data that clearly proves that benefits out way risks is essential before the widespread use of highly crosslinked poly.

High Activity, Low Wear What wouldn't I use?

Mechanical failure thresholds
• Gamma-irradiated poly not annealed
• Gamma-sirrig
• Ga

Polyethylene currently on the market

Conventional Polyethylene

Manufacturer	Product name	Resin	Fabrication	Sterilization	Radiation Dose	Annealing Process
Stryker	Convertional	GUR 1020	compression-molded	Gamma-nibogen	3 Mrad	None
Depuy	614	GUR 1020	machined	Gamma-vacuum foil	2.5-4 Mrad	None
Depuy	Enduron	GUR 1050	machined	Gas Plasma	N/A	N/A
Zimmer	Conventional	GUR 1050	majority direct compression molded (product specific)	Gamma nibogen	~3.7 Mrad	None
Zimmer	Sulane	GUR 1020	machined from compression molded bar stock	Gamma-nitrogen	~3.7 Mrad	None
lionet	Arcom	GUR 1050	Isostatic compression molded and machined or direct compression-	Gamma-barrier film package	3.3 Mrad	None
Smith & Nechasy	Committeeal	GUE 1020	machined from compression molded	00	N/A	N/A

Efforts to Improve Wear properties of poly Failed Miserably

- Carbon-fiber reinforced polyethylene
- Heat pressed polyethylene
- · Hylamer-M polyethylene

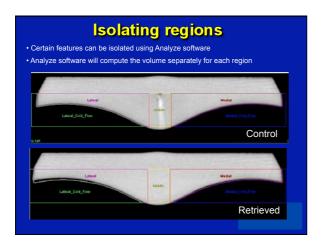
Carbon-Fiber Reinforced Poly

- 26 carbon-fiber reinforced vs. 20 plain polys
- Fatigue crack propogation an order of magnitiude faster in carbon-fiber implants

Wright et al, JBJS, 1988

Heat Pressed Poly

 Early surface delamination in retrieved heatpressed tibial inserts
 Bloebaum et al, CORR, 1991


Hylamer-M Poly

• Early failure with the use of <u>Hylamer-M</u>

Ahn et al, JOA, 2001 Ries et al, JOA. 1996

Anderson Clinic Results

- 332 AMK implants
- gamma-in-air
- Revised<10 years: 16
 Revisions for wear/ osteolysis: 8
- 335 AMK implants
- Gas plasma
- Revised<10 years:6
- Revisions for wear/ osteolysis: 0

